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Abstract. The effects of conduction-band (CB) impurities in heavy-fermion systems are studied
on the basis of theU → ∞ periodic Anderson model in the framework of a slave-boson
mean-field theory within the single-site coherent-potential approximation (CPA). We provide a
simplified CPA formalism for the treatment of mixing disorder induced by CB alloying. The
density of states for conduction and localized f electrons can be calculated self-consistently
in the whole impurity-concentration range. The concentration dependence of the specific-heat
coefficient, static magnetic susceptibility and resistivity at low temperatures as well as the Kondo
temperature in the alloys is obtained. The results indicate that the experimental observations in
CeCu6 upon doping with Au, Ag and Al can be qualitatively explained as the effects of mixing
disorder.

1. Introduction

The heavy-fermion (HF) systems, with a very large density of states (DOS) at the Fermi
level, contain an entire class of rare-earth or actinide intermetallic compounds. Some of
them which show neither magnetic nor superconducting order at extremely low temperatures
may be described in terms of a Fermi liquid with a very large effective mass [1, 2]. Recently,
however, many experimental observations show a weak stability of the normal phase of HF
systems [3–5], and the conventional Fermi-liquid picture is facing a challenge. In order for
the nature of normal HF materials including the proximity to magnetism to be understood
more thoroughly, much attention has been in the past few years to the effects of alloying,
especially with conduction-band (CB) impurities. Many pieces of evidence reveal a strong
impurity-concentration dependence of physical properties of these alloys [6–11]. In CeCu6,
for example, accompanying the expansion in cell volume induced by substitutions of Au or
Ag on Cu sites, the specific-heat coefficientγ and the magnetic susceptibilityχ increase
with increasing CB impurities, and the magnetic order is established in the ground state,
whereas Al substitutions for Cu decrease the cell volume and result in the reduction of
γ and χ ; moreover fairly dilute Al impurities can also lead to the suppression of the
low-temperature resistivity peak of CeCu6. All these phenomena provide some important
information for the exploration of the microscopic origin of the weak stability of normal
phase, and the theoretical study of the CB-alloying effects is significant in the systematic
understanding of the normal-state properties of HF systems.

The elucidation of the low-temperature properties with CB impurities demands a self-
consistent alloy theory applicable to the case of finite temperature and over the whole
impurity concentration range (06 c 6 1). Theoretically, progress has been made in the
study of the HF alloys. Within the single-site coherent-potential approximation (CPA), a
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Kondo-alloy theory proposed by Xu and Li has successfully handled the drastic disorder
on the bare f level due to Kondo holes [12, 13]. However, as for the CB impurities, they
have no direct influence on the bare f level since the substitutions occur at non-f metal
atoms. Apparently, their main effects are quite different from those of Kondo holes. An
anomalously large electronic Grüneisen constant [14] and a dramatic variation of Kondo
temperature with an applied pressure [15, 16] have been detected from experiments on HF
systems. All these indicate that the mixing strength is sensitive to the variation in cell
volume, and the change in c–f mixing strength may be significant even though the cell-
volume change due to the CB impurity is small. On the other hand, some theoretical
investigations [17–19] have proved that the potential disorder in the conduction-electron
energies has a weak influence on the coherence of HF systems, and it is negligible in
comparison with the drastic effect of mixing disorder. Therefore, we may describe the CB-
doped HF systems by introducing only the mixing disorder into the periodic Anderson model
(PAM). Some research works based on this disorder model have successfully explained the
experimental results concerning the magnetic instability and residual magneto-resistivity
of HF systems width CB impurities [20–22] The purpose of this paper is to establish a
simplified CPA theory for the HF alloy with CB impurities in the framework of the slave-
boson (SB) mean-field approximation (MFA). We expect to give a unified explanation of
alloying effects, including the concentration dependence of the DOS, Kondo temperature
TK, specific-heat coefficientγ , static magnetic susceptibilityχ and resistivityρ.

The rest of this paper is organized as follows. We shall describe the disorder model
with CB impurities in the SBMFA in section 2, and introduce a simplified CPA formalism
in section 3. In section 4, the variation of Kondo temperature and DOS induced by
impurities will be discussed, and an attempt to explain the effect of the CB impurities
on low-temperature thermodynamic and transport properties will be shown. Finally, our
results will be summarized in section 5.

2. Disorder model of HF alloys with CB impurities

TheU → ∞ PAM is referred to as a suitable description for the normal state of HF metals
[23, 24]. With the aid of the SB technique introduced by Barnes [25] and Coleman [26],
the strong on-site correlation between f electrons is clearly described, and the Hamiltonian
becomes easily solvable in the MFA giving rise to exact results in the large-degeneracy
limit, from which a Fermi liquid state with large effective mass is obtained [23]. When
the system is doped with conduction-band impurities, as discussed in section 1, the main
effect, that the impurities can bring about a local change in the cell volume thus give rise
to a change in the c–f mixing strength at the impurity sites, should be considered. The
Hamiltonian of the HF alloy can then be written as

H =
∑
kσ

εkc+
kσ ckσ +

∑
lσ

(V + ξl1V )(c+
lσ b+

l flσ + f +
lσ blclσ ) +

∑
lσ

E0f
+
lσ flσ (1)

with a constraint reflecting the strong on-site f–f correlation∑
σ

f +
lσ flσ + b+

l bl = 1 (2)

wherec+
kσ (flσ ) is the creation (annihilation) operator of the conduction (localized) electron

in the Bloch (Wannier) state labelled by momentumk (site l) and spinσ ; ξl is the random
variable withξl = 0 for a sitel with no impurities andξl = 1 for a CB-impurity-occupied
site l, where the c–f mixing strengthV changes by1V . Note that the random average

ξ
2
l = ξ l = c, wherec is the normalized concentration of CB impurities.
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In the MFA, bothbl andb+
l can be replaced by a c-numberr, and a Lagrange multiplier

λ is introduced to ensure the satisfaction of the constraint (2). Then the MFA Hamiltonian
is reduced to

H̄ =
∑
kσ

(c+
kσ , f +

kσ )Ek

(
ckσ

fkσ

)
+

∑
lσ

ξl(c
+
lσ , f +

lσ )1V
(

clσ

flσ

)
+ Nλ(r2 − 1) (3)

with

Ek ≡
(

εk rV

rV Ef

)
(4)

and

1V ≡
(

0 r 1V

r 1V 0

)
(5)

where the renormalized f level is defined asEf ≡ E0 + λ, andN is the number of lattice
sites. The SB parametersr and λ are determined by the minimum condition of the free
energy ∑

σ

〈f +
lσ flσ 〉 = 1 − r2 (6)

(V + ξl1V )
∑

σ

〈c+
lσ flσ + f +

lσ clσ 〉 + 2rλ = 0. (7)

The appearance of the random variableξl in (3) and (7) implies that the standard
procedure is unable to diagonalize the disordered Hamiltonian. Therefore, we shall adopt
the single-site CPA to solve this disordered model self-consistently.

3. Mixing renormalization in CPA regime

The idea of the CPA is to replace the disorder potential of impuritiesξl1V by a
translationally invariant but energy-dependent coherent potential of the effective medium

S(ω) ≡
(

Scc(ω) Scf(ω)

Sfc(ω) Sff (ω)

)
(8)

as embodied in the effective Hamiltonian

H̃ =
∑
kσ

(c+
kσ , f +

kσ )[Ek + S(ω)]

(
ckσ

fkσ

)
+ Nλ(r2 − 1) (9)

from which the matrix of medium Green’s function (GF) in the space of basis vectors
(ckσ , fkσ )T

G(k, ω) ≡
(

Gcc(k, ω) Gcf(k, ω)

Gfc(k, ω) Gff (k, ω)

)
= [ω − Ek − S(ω)]−1 (10)

is derived. The determination ofS(ω) is related to a self-consistent requirement of the
CPA. In the single-site CPA, the potentialS(ω) has to be determined in such a way that
in the effective medium the average relative scattering by impurities vanishes at each site
[27]. According to [27], this condition is equivalent to a self-consistent equation

S[1 − F(1V − S)] = c 1V (11)

with the averaged site GF of the effective medium

F(ω) ≡
(

Fcc(ω) Fcf(ω)

Ffc(ω) Fff (ω)

)
= N−1

∑
k

G(k, ω) (12)
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which has the matrix-element expression

Fcc = N−1
∑

k

[
ω − εk − Scc − (rV + Scf)(rV + Sfc)

ω − Ef − Sff

]−1

(13)

Fcf = Fcc
rV + Scf

ω − Ef − Sff
(14)

Ffc = rV + Sfc

ω − Ef − Sff
Fcc (15)

Fff = 1

ω − Ef − Sff

[
1 + (rV + Sfc)Fcc(rV + Scf)

ω − Ef − Sff

]
. (16)

In general, it is difficult to solve the nonlinear equation (11) self-consistently. Noting
that there exists only mixing disorder in our model, we can introduce the renormalized
mixing termV 2(ω) with the definition

r2V 2

ω − Ef
≡ Scc + (rV + Scf)(rV + Sfc)

ω − Ef − Sff
(17)

to reflect the alloying effects so that the CPA formalism may be simplified (the details will
be given in the appendix). After some algebraic manipulations of (11) with the use of
(13)–(17), the self-consistent CPA equation can be simplified as

c

V 2 − V 2
+ 1 − c

V 2 − (V + 1V )2
+ r2Fcc(ω)

ω − Ef
= 0 (18)

which naturally reduces to the lattice case

V 2 =
{

V 2 c = 0

(V + 1V )2 c = 1
(19)

and has a more compact form

Fcc(ω) = c

6cc(ω, 0) − 6cc(ω, c)
+ 1 − c

6cc(ω, 1) − 6cc(ω, c)
(20)

in terms of the self-energy of conduction electrons6cc(ω, c) ≡ r2V 2/(ω − Ef) in the
effective medium. In the meantime, the relation

rV + Scf

ω − Ef − Sff
= rV + Sfc

ω − Ef − Sff
= r[V 2 + V (V + 1V )]

(ω − Ef)[V + (V + 1V )]
(21)

is obtained. Therefore, we can define

V ≡ V 2 + V (V + 1V )

V + (V + 1V )
(22)

so that the matrix elements of the site GF can be expressed in analogy with the lattice case
as

Fcc = N−1
∑

k

[
ω − εk − r2V 2

ω − Ef

]−1

(23)

Fcf = Ffc = rV

ω − Ef
Fcc (24)

Fff = 1

ω − Ef

[
1 + r2V 2

ω − Ef
Fcc

]
. (25)
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In the alloy case (0< c < 1), V 2 is generally the complex number with the small imaginary
part leading to a finite lifetime of heavy fermions.

Now, in combination with the CPA equation (18), definition (22) and expressions of GF
(23)–(25), the SB parametersr andλ can be determined self-consistently. In the effective
medium, the SB equations (6) and (7) may be rewritten by taking an average over the
randomness and using GF spectral theorem as

1 − r2 = − 2

π

∫ +∞

−∞
dω f (ω − µ) Im Fff (ω + i0+) (26)

rλ = 2(V + c1V )

π

∫ +∞

−∞
dω f (ω − µ) Im Fcf(ω + i0+) (27)

wheref (ω − µ) is the Fermi distribution function and (23) has been made use of. The
chemical potentialµ is determined by the total number of electrons

nc + 1 = − 2

π

∫ +∞

−∞
dω f (ω − µ)[Im Fcc(ω + i0+) + Im Fff (ω + i0+)] (28)

wherenc is the unperturbed conduction electron number per site.
Equations (18) and (22)–(28) constitute a fundamental system of equations for

determining the SB parameters and GF of the effective medium. It naturally provides
a smooth interpolation between two limitsc = 0 and c = 1, then can easily be applied
to calculate the Kondo temperature and electronic DOS of HF alloys with arbitrary CB-
impurity concentration.

4. Alloying effects in normal HF systems

We now turn to discuss the CB-alloying effects on the properties of normal HF systems.
We have discussed the dependence ofTK upon the impurity concentrationc. On the basis
of the above CPA theory, the zero-temperature electronic DOS and residual resistivityρR

as well as the specific-heat coefficientγ , magnetic susceptibilityχ and resistivityρ at low
temperature have been calculated. In these calculations, we takeE0 = −0.9 D, V = 0.2 D

andnc = 0.5. For simplicity, the DOS of the unperturbed conduction electron is assumed
to be a constant with a band width 2D. The analytic and numerical results which can be
compared with the experimental observations [6–11] are shown as follows.

4.1. The Kondo temperatureTK

As a signal for transition between the independent magnetic-ion state and the coherent
Kondo-lattice state, the Kondo temperature can be determined with the conditionr = 0.
After the r2 terms in (18), (23) and (25) are neglected, equations (26) and (28) give

Ef = µ ≈ (nc − 1)D (29)

for kBTK � D, and a virtual crystal solution ofV

V = (1 − c)V + c(V + 1V ) (30)

can be found from (18) and (22). Substituting (24), (29) and (30) into (27), we arrive at

2(V + c1V )2

πN(µ − E0)

∑
k

∫ +∞

−∞
dω fK(ω − µ) Im

[
1

(ω + i0+ − εk)(ω + i0+ − µ)

]
= 1 (31)
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with the Fermi functionfK(ω − µ) at TK, and can perform the sum and integral to obtain

kBTK(c) = 2eγ

π

√
nc(2 − nc)D exp

{
−D[(nc − 1)D − E0]

(V + c1V )2

}
(32)

which is linearly approximated to

TK(c) = TK(0)

{
1 + 2D[(nc − 1)D − E0]1V

V 3
c

}
(33)

in the dilute limit.
Equations (32) and (33) indicate that the Kondo temperatureTK increases or decreases

monotonically with the impurity concentrationc if the impurities tend to increase or decrease
with mixing strength.

Furthermore, the cell-volume dependence of mixing strength can be discussed in terms
of TK. The CB doping will change the mixing strength dramatically because of the variation
of cell volume in the HF system. Experimentally, an anomalously large electronic Grüneisen
constant0 of the order of 102 has been detected [14], and0 can be defined as

0 ≡ −∂ ln TK

∂ ln �
(34)

where� denotes the cell volume. From (32) and (34), the relationship

1V =
{

1

V 2
+ 0

D[(nc − 1)D − E0]

(
1�

�

)}−1/2

− V (35)

is attained. It predicts the increase and decrease of mixing strength respectively
corresponding to the contraction and expansion of cell observed in experiments for CeCu6.

In conclusion, the Kondo coherence of HF systems is affected by CB alloying, as
manifested by the variation of the Kondo temperatureTK in connection with the change
in cell volume. In CeCu6, Au or Ag substitutions for Cu, with the cell volume increasing
and the mixing weakened, dropTK and suppress the Kondo coherent state; in contrast,
Al substitutions raiseTK and support the Kondo coherent state.

4.2. The electronic DOS at T= 0

The electronic DOS is defined by the imaginary part of the site GF. The DOS of conduction
and f electrons for each spin can be written as

Nc(f)(ω) = − 1

π
Im Fcc(ff)(ω + i0+) (36)

whereFcc andFff should be calculated self-consistently from equations (18) and (22)–(28).
Although the DOS can be solved analytically in the case ofc = 0 andc = 1, we have to
proceed with a numerical calculation in the region of 0< c < 1.

The numerical results for the DOS near the Fermi levelµ and c-dependent f DOS on
the Fermi level atT = 0 are respectively shown in figures 1 and 2. In the vicinity ofµ,
the HF systems have the f DOS much larger than the c DOS, and the f DOS is shown to
increase withc if the impurities expand the cell and thus reduce the mixing strength, and to
decrease withc for the opposite condition. With the DOS information, the thermodynamic
properties can be naturally explained.
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Figure 1. The zero-temperature electronic DOS of CB-doped alloys near the Fermi level
(denoted by dotted lines).

Figure 2. The zero-temperature f DOS of CB-doped alloys at the Fermi level; inset, dilute
doping cases.

4.3. The specific-heat coefficientγ

In the low-temperature region, the main contribution to the specific heat originates from
f electrons near the Fermi level becauseNf(ω) � Nc(ω); then the specific-heat coefficient
of alloys can be written in terms of the f DOS as

γ (T ) = 1

2
k2

Bβ3
∫ +∞

−∞
dω(ω − µ)2 sech2

[
β(ω − µ)

2

]
Nf(ω)
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= 1

2
k2

B

∫ +∞

−∞
dη η2 sech2

η

2
Nf(µ + ηkBT ) (37)

with β = (kBT )−1. At zero temperature, we have

γ (0) = 2
3π2k2

BNf(µ). (38)

Thus, the zero-temperature specific-heat coefficient is proportional to the f DOS at the Fermi
level. Its variation withc can be illustrated by figure 2. At low temperatures, it can be
expected that the shape of the f DOS changes very little in comparison with the zero-
temperature case. Then figure 1 is capable of explaining the numerical results of theγ –T

curves for various CB-impurity concentrations given in figure 3, which are qualitatively in
agreement with experiments [6, 7, 9, 10]. Since the f DOS close to the Fermi level increases
or decreases with decreasing or increasing mixing strength, the expansion or contraction of
the cell induced by CB impurities will lead to a rise or fall of low-temperature specific-heat
coefficient dependent on the concentration, as shown in figure 3.

Figure 3. The specific-heat coefficient of CB-doped alloys withγu ≡ k2
B/D.

4.4. The magnetic susceptibilityχ

The static magnetic susceptibility for f electrons in HF systems can be expressed in terms
of the f DOS as

χ(T ) = 1

2
µ2

Bβ

∫ +∞

−∞
dω sech2

[
β(ω − µ)

2

]
Nf(ω)

= 1

2
µ2

B

∫ +∞

−∞
dη sech2

η

2
Nf(µ + ηkBT ) (39)

whereµB is the Bohr magneton. The zero-temperature magnetic susceptibility

χ(0) = 2µ2
BNf(µ) (40)

is only determined by the f DOS at the Fermi level, so its dependence onc can also be
explained by figure 2. For the same reason as mentioned in subsection 4.3, the variation of
low-temperature susceptibility with the impurity concentration can be interpreted in terms of
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the change in mixing strength. In accordance with the experiments [6, 7, 10], our numerical
results at low temperature sketched in figure 4 display the increase and decrease ofχ

respectively corresponding to negative and positive1V . The former foreshadows the
onset of magnetic order in the ground state (see [20]), and the latter implies the more
stable paramagnetic state of HF systems with the mixing strengthened. It is the change
in mixing strength that not only results in the variation of the low-temperature magnetic
susceptibility with the CB-impurity concentration, but also affects the stability of normal
states in HF systems.

Figure 4. The magnetic susceptibility of CB-doped alloys withχu ≡ µ2
B/D.

4.5. The resistivityρ

In a perfect Kondo lattice, there should be, in the MFA, no resistivity because of the infinite
lifetime of heavy fermions. The non-zero resistivity at finite temperature comes from the
charge fluctuations around the MFA [24]. Experimentally and theoretically [1, 24, 28], a
Kondo coherence peak at temperature belowTK and the Fermi-liquid law characterized by
the resistivity fall in the form ofT 2 after reaching that peak have been confirmed.

When doped with CB impurities, besides the fluctuation-induced resistivityρF, the
HF system will have in the MFA an impurity-scattering resistivityρI due to the finite lifetime
of heavy fermions resulting from the mixing disorder. Its reciprocal, i.e. the conductivity,
can be expressed in the Kubo–Greenwood formula

σI(T ) = 2h̄e2v2
F

3πN�

∫ +∞

−∞
dω

[
−∂f (ω − µ)

∂ω

] ∑
k

[Im Gcc(k, ω + i0+)]2 (41)

with the Fermi velocityvF. The appearance of the matrix element of GFG in (41) means
that the scattering resistivity originates from the imaginary part of the self-energy6cc of
c electrons. At a temperature much lower thanTK, in view of the Fermi-liquid behaviour
of ρF [24], we express the total resistivity as

ρ(T ) = ρI(T ) + α

(
T

TK

)2

ρu (42)
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where a unit resistivity is defined asρu ≡ 3π�D2/2h̄e2v2
F and a suitable dimensionless

constant is denoted byα.
From (42), a residual resistivity only contributed to by the impurity scattering can be

found. It can be calculated from the reduced form of (41) at zero temperature

σI(0) = D2

Nρu

∑
k

[Im Gcc(k, µ + i0+)]2. (43)

Figure 5 sketches theρR–c curve, whereρR = 1/σI(0). In the low-temperature
region, however, both fluctuations and impurity scattering are responsible for resistivity.
Apparently, when the system is cooled, the fluctuation resistivity falls, but the scattering
resistivity of impurities rises because the imaginary part of6cc is proportional to the
SB parameterr2, which increases with decreasing temperature. Hence how the low-
temperature resistivity varies withT depends on the competition between these two effects.
For the dilute doping, increasing the impurity concentration makes the rise of scattering
resistivity more sensitive to the increase inr2. In a real HF metal such as CeCu6 with a
suitable doping of Al impurities, the rise ofρI with decreasingT will be rapid enough to
overwhelm the fall ofρF, thus the total resistivity increases monotonically with decreasing
temperature and the coherence peak vanishes. The relevant numerical results are shown in
figure 6, which can be compared with experiments [10, 11].

Figure 5. The residual resistivity of CB-doped alloys withρu ≡ 3π�D2/2h̄e2v2
F; inset, dilute

doping cases.

5. Conclusions

In this paper, we introduced mixing disorder into the Anderson lattice model as a starting
point to discuss the CB doping in a HF metal. A mixing-renormalization method based on
the single-site CPA theory has been presented under the scheme of SBMFA to describe the
alloying effects in the normal state. In this picture, the impurity-concentration dependence of
low-temperature properties of normal HF alloys can be explained as a renormalization effect
of the mixing. In fact, the real part of the renormalized mixing term, as an interpolating
function about the impurity concentration, reflects the effective mixing correlation. Its
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Figure 6. The resistivity of CB-doped alloys withρu ≡ 3π�D2/2h̄e2v2
F.

variation with the concentration leads to a change in the effective mass of heavy fermions
near the Fermi level and, in consequence, modifies the thermodynamic properties of HF
systems. It may be owing to the increase or decrease in the effective mixing strength that
Al or Au and Ag substitutions for Cu in CeCu6 bring about the fall or rise of the specific-
heat coefficient and magnetic susceptibility. On the other hand, the imaginary part of the
renormalized mixing term determines a finite lifetime of heavy fermions, and hence affects
dramatically the transport properties. For CeCu6 with Al doping the mixing disorder results
in an impurity-scattering resistivity. Its increase with a drop in the temperature suppresses
the fall of low-temperature resistivity, then, at a moderate impurity concentration, leads to a
monotonic increase of total resistivity and the disappearance of the Kondo coherence peak.

Finally, we would like to point out that the above discussion is valid only for the systems
at low temperature. In order to extend our theory to study the properties of the CB-doped
HF systems at elevated temperatures, we have to go beyond the MFA. This problem is
under investigation.
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Appendix

Now, we want to give the major steps towards the simplification of CPA formalism. First,
we rewrite the CPA equation (11) as

U ≡ S[1 − F(1V − S)] − c1V = 0. (A1)

Introducing two-component vectorsa ≡ (1, rV/(ω−Ef))
T, b ≡ (1, r(V +1V )/(ω−Ef))

T

andc ≡ (0, 1)T and making use of (14)–(17), we achieve(
r2V 2

ω − Ef
− r2V 2

ω − Ef

)
Fcc(ω)

[
r2V 2

ω − Ef
− r2(V + 1V )2

ω − Ef

]
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= − (1 − c)

(
r2V 2

ω − Ef
− r2V 2

ω − Ef

)
− c

[
r2V 2

ω − Ef
− r2(V + 1V )2

ω − Ef

]
(A2)

from aT Ub = 0,(
r2V 2

ω − Ef
− r2V 2

ω − Ef

)
Fcc(ω)

[
rV + Scf

ω − Ef − Sff
− r(V + 1V )

ω − Ef

]
= − (1 − c)

(
rV + Scf

ω − Ef − Sff
− rV

ω − Ef

)
−c

[
rV + Scf

ω − Ef − Sff
− r(V + 1V )

ω − Ef

]
(A3)

from aTUc = 0,(
rV + Sfc

ω − Ef − Sff
− rV

ω − Ef

)
Fcc(ω)

[
r2V 2

ω − Ef
− r2(V + 1V )2

ω − Ef

]

= − (1 − c)

(
rV + Sfc

ω − Ef − Sff
− rV

ω − Ef

)
−c

[
rV + Sfc

ω − Ef − Sff
− r(V + 1V )

ω − Ef

]
(A4)

from cTUb = 0 and(
rV + Sfc

ω − Ef − Sff
− rV

ω − Ef

)
Fcc(ω)

[
rV + Scf

ω − Ef − Sff
− r(V + 1V )

ω − Ef

]
= 1

ω − Ef
− 1

ω − Ef − Sff
(A5)

from cTUc = 0. Equation (A2) can be easily reduced to the simplified CPA equation (18).
Combining (A3) and (A4) with (A2), we obtain the relation (21). By substituting (17) into
(13), (21) and (22) into (14) and (15), and (16) and (21) into (A5), equations (23)–(25) can
be derived.
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